Obsah:

Dokazují odpovídající úhly rovnoběžky?
Dokazují odpovídající úhly rovnoběžky?

Video: Dokazují odpovídající úhly rovnoběžky?

Video: Dokazují odpovídající úhly rovnoběžky?
Video: Proof: Corresponding angle equivalence implies parallel lines | Geometry | Khan Academy 2024, Listopad
Anonim

První je, pokud odpovídající úhly , úhly které jsou na stejném rohu na každém průsečíku, jsou stejné, pak linky jsou paralelní . Druhým je, pokud střídání vnitřních úhlů , úhly které jsou naproti strany příčného a uvnitř rovnoběžky , jsou si rovny, pak linky jsou paralelní.

Navíc, která věta dokazuje, že dvě přímky jsou rovnoběžné?

Li dva řádky jsou řezané příčnou a alternativní vnější úhly jsou stejné, pak dvě čáry jsou rovnoběžné . Úhly mohou být stejné nebo shodné; v obou můžete nahradit slovo „rovná se“. teorémy s "kongruentním" bez ovlivnění teorém . Pokud jsou tedy ∠B a ∠L stejné (nebo shodné), je čáry jsou rovnoběžné.

Podobně, jsou rovnoběžné čáry shodné? Pokud dva rovnoběžky jsou řezány příčnou, odpovídající úhly jsou shodný . Pokud dva linky jsou řezány příčnou a odpovídající úhly jsou shodný , čáry jsou rovnoběžné . Vnitřní úhly na stejné straně příčné: Název je popisem "umístění" těchto úhlů.

Víte také, jakými pěti způsoby dokázat, že jsou dvě přímky rovnoběžné?

Podmínky v této sadě (6)

  • #1. jsou-li odpovídající úhly shodné.
  • #2. pokud jsou alternativní vnitřní úhly shodné.
  • #3. pokud jsou po sobě jdoucí nebo na stejné straně, vnitřní úhly jsou doplňkové.
  • #4. jsou-li dvě přímky rovnoběžné se stejnou přímkou.
  • #5. jsou-li dvě přímky kolmé na stejnou přímku.
  • #6. pokud jsou alternativní vnější úhly shodné.

Jak dokážete paralelu?

První je, pokud jsou odpovídající úhly, úhly, které jsou ve stejném rohu v každém průsečíku, stejné, pak jsou čáry paralelní . Druhým je, pokud se střídají vnitřní úhly, úhly, které jsou na opačných stranách příčné a uvnitř paralelní řádky, jsou stejné, pak řádky jsou paralelní.

Doporučuje: